SISTEM BILANGAN
I. DEFINISI
System
bilangan (number system) adalah suatu
cara untuk mewakili besaran dari suatu item fisik. Sistem bilanan yang banyak
dipergunakan oleh manusia adalah system biilangan desimal, yaitu sisitem
bilangan yang menggunakan 10 macam symbol untuk mewakili suatu besaran.Sistem
ini banyak digunakan karena manusia mempunyai sepuluh jari untuk dapat membantu
perhitungan. Lain halnya dengan komputer, logika di komputer diwakili oleh
bentuk elemen dua keadaan yaitu off (tidak ada arus) dan on (ada
arus). Konsep inilah yang dipakai dalam sistem bilangan binary yang mempunyai
dua macam nilai untuk mewakili suatu
besaran nilai.
Selain
system bilangan biner, komputer juga menggunakan system bilangan octal dan
hexadesimal.
II. Teori Bilangan
1.
Bilangan Desimal
Sistem ini
menggunakan 10 macam symbol yaitu 0,1,2,3,4,5,6,7,8,dan 9. system ini
menggunakan basis 10. Bentuk nilai ini dapat berupa integer desimal atau
pecahan.
Integer
desimal :
adalah nilai
desimal yang bulat, misalnya 8598 dapat diartikan :
8 x 103 = 8000
5 x 102 =
500
9 x 101 =
90
8 x 100 =
8
8598
position
value/palce value absolute value
Absolue value merupakan nilai
untuk masing-masing digit bilangan, sedangkan
position value adalah merupakan penimbang atau bobot dari masing-masing
digit tergantung dari letak posisinya, yaitu nernilai basis dipangkatkan dengan
urutan posisinya.
Pecahan desimal :
Adalah nilai desimal yang
mengandung nilai pecahan dibelakang koma, misalnya nilai 183,75 adalah pecahan
desimal yang dapat diartikan :
1 x 10 2 = 100
8 x 10 1 =
80
3 x 10 0 =
3
7 x 10 –1 =
0,7
5 x 10 –2 =
0,05
183,75
2. Bilangan Binar
Sistem
bilangan binary menggunakan 2 macam symbol bilangan berbasis 2digit angka,
yaitu 0 dan 1.
Contoh bilangan 1001 dapat
diartikan :
1 0 0 1
1
x 2 0 = 1
0
x 2 1 = 0
0
x 2 2 = 0
1
x 2 3 = 8
10
(10)
Operasi aritmetika pada
bilangan Biner :
a. Penjumlahan
Dasar
penujmlahan biner adalah :
0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 0 dengan carry of 1, yaitu 1
+ 1 = 2, karena digit terbesar ninari 1, maka harus dikurangi dengan 2 (basis),
jadi 2 – 2 = 0 dengan carry of 1
contoh :
1111
10100 +
100011
atau dengan langkah :
1 + 0 =
1
1 + 0 =
1
1 + 1 =
0 dengan carry of 1
1 + 1 + 1 =
0
1 + 1 =
0 dengan carry of 1 1
0 0 0
1 1
b. Pengurangan
Bilangan biner
dikurangkan dengan cara yang sama dengan pengurangan bilangan desimal. Dasar
pengurangan untuk masing-masing digit bilangan biner adalah :
0 - 0 = 0
1 - 0 = 1
1 - 1 = 0
0 – 1 = 1 dengan borrow of 1, (pijam
1 dari posisi sebelah kirinya).
Contoh :
11101
1011 -
10010
dengan
langkah – langkah :
1
– 1 = 0
0
– 1 = 1 dengan borrow of 1
1 – 0 – 1 = 0
1
– 1 = 0
1
– 0 = 1
1 0
0 1 0
c. Perkalian
Dilakukan sama
dengan cara perkalian pada bilangan desimal. Dasar perkalian bilangan biner
adalah :
0 x 0 = 0
1 x 0 = 0
0 x 1 = 0
1 x 1 = 1
contoh
Desimal
|
Biner
|
14
12 x
28
14
+
168
|
1110
1100 x
0000
0000
1110
1110 +
10101000
|
d. pembagian
Pembagian
biner dilakukan juga dengan cara yang sama dengan bilangan desimal. Pembagian
biner 0 tidak mempunyai arti, sehingga dasar pemagian biner adalah :
0 : 1 = 0
1 : 1 = 1
Desimal
|
Biner
|
5 /
125 \ 25
10
-
25
25 -
0
|
101 / 1111101 \ 11001
101 -
101
101 -
0101
101 -
0
|
3. Bilangan Oktal
Sistem
bilangan Oktal menggunakan 8 macam symbol bilangan berbasis 8 digit angka,
yaitu 0 ,1,2,3,4,5,6,7.
Position value system bilangan
octal adalah perpangkatan dari nilai 8.
Contoh :
12(8) = …… (10)
2
x 8 0 = 2
1 x 8 1 =8 10
Jadi 10 (10)
Operasi Aritmetika pada
Bilangan Oktal
a. Penjumlahan
Langkah-langkah
penjumlahan octal :
-
tambahkan masing-masing kolom secara desimal
-
rubah dari hasil desimal ke octal
-
tuliskan hasil dari digit paling kanan dari
hasil octal
-
kalau hasil penjumlahan tiap-tiap kolom terdiri
dari dua digit, maka digit paling kiri merupakan carry of untuk penjumlahan
kolom selanjutnya.
Contoh :
Desimal
|
Oktal
|
|||
21
87 +
108
|
25
127 +
154
5 10 + 7 10 = 12 10 =
14 8
2 10 + 2 10
+ 1 10 = 5 10
= 5 8
1 10 = 1 10 =
1 8
|
b. Pengurangan
Pengurangan
Oktal dapat dilaukan secara sama dengan pengurangan bilangan desimal.
Contoh :
Desimal
|
Oktal
|
|||
108
87 -
21
|
154
127 -
25
4 8 - 7 8 + 8 8 (borrow of) = 5 8
5 8 - 2 8
- 1 8 = 2 8
1 8 - 1 8 = 0 8
|
c. Perkalian
Langkah –
langkah :
-
kalikan masing-masing kolom secara desimal
-
rubah dari hasil desimal ke octal
-
tuliskan hasil dari digit paling kanan dari
hasil octal
-
kalau hasil perkalian tiap kolol terdiri dari 2
digit, maka digit paling kiri merupakan carry of untuk ditambahkan pada hasil
perkalian kolom selanjutnya.
Contoh :
Desimal
|
Oktal
|
14
12 x
28
14 +
168
|
16
14 x
70
4 10
x 6 10 = 24 10 = 30 8
4 10
x 1 10 + 3 10 = 7 10 = 7 8
16
14 x
70
16
1 10
x 6 10 = 6 10 = 6 8
1 10
x 1 10 = 1 10 = 1 8
16
14 x
70
16 +
250
7 10
+ 6 10 = 13 10 = 15 8
1 10 + 1 10 = 2 10 = 2 8
|
d. Pembagian
Desimal
|
Oktal
|
12 /
168 \ 14
12 -
48
48 –
0
|
14 / 250 \ 16
14 - 14 8 x 1 8
= 14 8
110
110 - 14 8 x 6 8 =
4 8 x 6 8 = 30 8
0 1 8 x 6 8 = 6 8 +
110 8
|
4. Bilangan Hexadesimal
Sistem
bilangan Oktal menggunakan 16 macam symbol bilangan berbasis 8 digit angka,
yaitu 0 ,1,2,3,4,5,6,7,8,9,A,B,C,D,Edan F
Dimana A = 10, B = 11, C= 12, D =
13 , E = 14 dan F = 15
Position value system bilangan
octal adalah perpangkatan dari nilai 16.
Contoh :
C7(16) = …… (10)
7
x 16 0 = 7
C x 16 1 = 192 199
Jadi 199 (10)
Operasi Aritmetika Pada
Bilangan Hexadesimal
a. Penjumlahan
Penjumlahan
bilangan hexadesimal dapat dilakukan secara sama dengan penjumlahan bilangan
octal, dengan langkah-langkah sebagai berikut :
Langkah-langkah
penjumlahan hexadesimal :
-
tambahkan masing-masing kolom secara desimal
-
rubah dari hasil desimal ke hexadesimal
-
tuliskan hasil dari digit paling kanan dari
hasil hexadesimal
-
kalau hasil penjumlahan tiap-tiap kolom terdiri
dari dua digit, maka digit paling kiri merupakan carry of untuk penjumlahan
kolom selanjutnya.
Contoh :
Desimal
|
hexadesimal
|
|||
2989
1073 +
4062
|
BAD
431 +
FDE
D 16 + 1 16 = 13 10 + 110 = 14 10 = E 16
A 16 + 3 16 = 10 10 + 3 10 = 13 10 =D 16
B16 + 4 16 = 1110 + 4 10
= 15 10 = F 16
|
b. Pengurangan
Pengurangan
bilangan hexadesimal dapat dilakukan secara sama dengan pengurangan bilangan
desimal.
Contoh :
Desimal
|
hexadesimal
|
|||
4833
1575 -
3258
|
12E1
627 -
CBA
16 10 (pinjam) + 1 10 - 710 = 10 10 = A 16
14 10 - 7 10 - - 1 10 (dipinjam) = 11 10 =B 16
1610 (pinjam) + 2 10 - 610 = 12 10 = C 16
1 10 – 1 10
(dipinjam) 0 10 = 0 16
|
c. Perkalian
Langkah –
langkah :
-
kalikan masing-masing kolom secara desimal
-
rubah dari hasil desimal ke octal
-
tuliskan hasil dari digit paling kanan dari
hasil octal
-
kalau hasil perkalian tiap kolol terdiri dari 2
digit, maka digit paling kiri merupakan carry of untuk ditambahkan pada hasil
perkalian kolom selanjutnya.
Contoh :
Desimal
|
Hexadesimal
|
172
27 x
1204
344 +
4644
|
AC
1B x
764
C 16
x B 16 =12 10
x 1110= 84 16
A16 x
B16 +816 = 1010 x 1110+810=7616
AC
1B x
764
AC
C16
x 116 = 1210 x 110 =1210=C16
A16
x 116 = 1010 x110 =1010=A 16
AC
1B x
764
AC +
1224
616
+ C16 = 610 + 1210
= 1810 =12 16
716+A16
+116 = 710 x 1010 + 110=1810
= 1216
|
D. Pembagian
Contoh :
Desimal
|
hexadesimal
|
27 / 4646
\ 172
27-
194
189 –
54
54 –
0
|
1B / 1214 \ AC
10E - 1B16xA16 = 2710x1010=27010=
10E16
144
144- 1B 16 x C16 = 2710
x 10 10 = 3240 10
0
=14416
|
III. Konversi Bilangan
Konversi
bilangan adalah suatu proses dimana satu system bilangan dengan basis tertentu akan dijadikan bilangan dengan basis yang alian.
Konversi dari bilangan Desimal
1. Konversi
dari bilangan Desimal ke biner
Yaitu dengan
cara membagi bilangan desimal dengan dua kemudian diambil sisa pembagiannya.
Contoh :
45 (10) =
…..(2)
45 : 2 = 22 + sisa 1
22 : 2 = 11 +
sisa 0
11 : 2 = 5 + sisa 1
5 : 2 =
2 + sisa 1
2 : 2 = 1 + sisa 0 101101(2) ditulis dari bawah ke atas
2. Konversi
bilangan Desimal ke Oktal
Yaitu dengan
cara membagi bilangan desimal dengan 8 kemudian diambil sisa pembagiannya
Contoh
:
385
( 10 ) = ….(8)
385
: 8 = 48 + sisa 1
48 : 8 =
6 + sisa 0
601
(8)
3. Konversi
bilangan Desimal ke Hexadesimal
Yaitu dengan
cara membagi bilangan desimal dengan 16 kemudian diambil sisa pembagiannya
Contoh
:
1583
( 10 ) = ….(16)
1583
: 16 = 98 + sisa 15
96 : 16 =
6 + sisa 2
62F
(16)
Konversi dari system bilangan
Biner
1. Konversi
ke desimal
Yaitu dengan
cara mengalikan masing-masing bit dalam bilangan dengan position valuenya.
Contoh :
1 0 0 1
1
x 2 0 = 1
0
x 2 1 = 0
0
x 2 2 = 0
1
x 2 3 = 8
10 (10)
2. Konversi ke Oktal
Dapat
dilakukan dengan mengkonversikan tiap-tiap tiga buah digit biner yang dimulai
dari bagian belakang.
Contoh :
11010100 (2) =
………(8)
11
010 100
3 2 4
diperjelas :
100 = 0 x 2 0 = 0
0 x 2 1 = 0
1
x 2 2 = 4
4
Begitu seterusnya untuk yang
lain.
3. Konversi
ke Hexademial
Dapat
dilakukan dengan mengkonversikan tiap-tiap empat buah digit biner yang dimulai
dari bagian belakang.
Contoh :
11010100
1101 0100
D
4
Konversi dari system bilangan
Oktal
1. Konversi
ke Desimal
Yaitu dengan
cara mengalikan masing-masing bit dalam bilangan dengan position valuenya.
Contoh :
12(8) = …… (10)
2
x 8 0 = 2
1 x 8 1 =8 10
Jadi 10 (10)
2. Konversi
ke Biner
Dilakukan dengan
mengkonversikan masing-masing digit octal ke tiga digit biner.
Contoh :
6502 (8) ….. =
(2)
2 = 010
0 = 000
5 = 101
6 = 110
jadi
110101000010
3. Konversi
ke Hexadesimal
Dilakukan
dengan cara merubah dari bilangan octal menjadi bilangan biner kemudian dikonversikan
ke hexadesimal.
Contoh :
2537 (8) =
…..(16)
2537 (8) =
010101011111
010101010000(2) = 55F (16)
Konversi dari
bilangan Hexadesimal
1. Konversi
ke Desimal
Yaitu dengan
cara mengalikan masing-masing bit dalam bilangan dengan position valuenya.
Contoh :
C7(16) = …… (10)
7
x 16 0 = 7
C
x 16 1 = 192 199
Jadi 199 (10)
2. Konversi
ke Oktal
Dilakukan
dengan cara merubah dari bilangan hexadesimal menjadi biner terlebih
dahulu kemudian dikonversikan ke octal.
Contoh :
55F (16) =
…..(8)
55F(16) =
010101011111(2)
010101011111
(2) = 2537 (8)
Latihan :
Kerjakan soal berikut dengan
benar !
1. Sebutkan
dan jelaskan empat macam system bilangan !
2. Konversikan
bilangan berikut :
a. 10101111(2)
= ………….(10)
b. 11111110(2)
= ………….(8)
c. 10101110101
= …………(16)
3. Konversi
dari :
a. ACD
(16) = ………(8)
b. 174
(8) = ……..(2)
4. BC1
2A X
5. 245
(8) : 24 (8) =……..(8)
No comments:
Post a Comment